题目内容

【题目】在△ABC中,A,B,C的对边分别是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求证:△ABC为等腰三角形
(2)若△ABC的面积为8 .且sinB= ,求BC边上的中线长.

【答案】
(1)解:∵在△ABC中3sin2C+8sin2A=11sinAsinC,

∴由正弦定理可得3c2+8a2=11ac,

分解因式可得(c﹣a)(3c﹣8a)=0

解得c=a或c= ,由c<2a可得c=a,

故△ABC为等腰三角形;


(2)解:∵△ABC的面积为8 ,且sinB=

∴8 = a2 ,解得a=c=8,

由同角三角函数基本关系可得cosB=±

设BC边上的中线长为x,当cosB= 时,

由余弦定理可得x2=82+42﹣2×4×8×cosB=64,x=8;

当cosB=﹣ 时,同理可得x2=82+42﹣2×4×8×cosB=96,x=4


【解析】(1)由已知式子和正弦定理可得3c2+8a2=11ac,分解因式结合题意可得c=a,可得△ABC为等腰三角形;(2)由题意和三角形的面积公式可得a=c=8,由同角三角函数基本关系可得cosB,利用余弦定理可得.
【考点精析】利用正弦定理的定义和余弦定理的定义对题目进行判断即可得到答案,需要熟知正弦定理:;余弦定理:;;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网