题目内容
【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为.
(1)求曲线C的普通方程;
(2)直线l的参数方程为,(t为参数),直线l与x轴交于点F,与曲线C的交点为A,B,当取最小值时,求直线l的直角坐标方程.
【答案】(1)(2)
【解析】
(1)由二倍角公式的逆运用化简已知方程,再由极坐标方程与普通方程间的关系化为普通方程;
(2)由直线l的参数方程可知其与x轴交于点,即为抛物线C的焦点,从而由参数方程中t的几何意义可知,为直线l的参数方程与抛物线C的普通方程联立之后的方程的两根,即可表示,进而由三角函数求最值,得其答案.
(1)由题意得,
得,得,
,,
,即曲线C的普通方程为.
(2)由题意可知,直线l与x轴交于点,即为抛物线C的焦点,
令,,
将直线l的参数方程,代入C的普通方程中,
整理得,
由题意得,根据根与系数的关系得,
,,
(当且仅当时,等号成立),
当取得最小值时,直线l的直角坐标方程为.
【题目】微信红包是一款可以实现收发红包、查收记录和提现的手机应用.某网络运营商对甲、乙两个品牌各5种型号的手机在相同环境下抢到的红包个数进行统计,得到如表数据:
手机品牌型号 | |||||
甲品牌(个 | 4 | 3 | 8 | 6 | 12 |
乙品牌(个 | 5 | 7 | 9 | 4 | 3 |
手机品牌红包个数 | 优 | 非优 | 合计 |
乙品牌(个 | |||
合计 |
(1)如果抢到红包个数超过5个的手机型号为“优”,否则“非优”,请完成上述列联表,据此判断是否有的把握认为抢到的红包个数与手机品牌有关?
(2)如果不考虑其它因素,要从甲品牌的5种型号中选出3种型号的手机进行大规模宣传销售.以表示选中的手机型号中抢到的红包超过5个的型号种数,求随机变量的分布列及数学期望.
下面临界值表供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | <>2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
参考公式:,其中.
【题目】中国北京世界园艺博览会于2019年4月29日至10月7日在北京市延庆区举行.组委会为方便游客游园,特推出“导引员”服务.“导引员”的日工资方案如下:
方案:由三部分组成
(表一)
底薪 | 150元 |
工作时间 | 6元/小时 |
行走路程 | 11元/公里 |
方案:由两部分组成:(1)根据工作时间20元/小时计费;(2)行走路程不超过4公里时,按10元/公里计费;超过4公里时,超出部分按15元/公里计费.已知“导引员”每天上班8小时,由于各种因素,“导引员”每天行走的路程是一个随机变量.试运行期间,组委会对某天100名“导引员”的行走路程述行了统计,为了计算方便对日行走路程进行取整处理.例如行走1.8公里按1公里计算,行走5.7公里按5公里计算.如表所示:
(表二)
行走路程 (公里) | |||||
人数 | 5 | 10 | 15 | 45 | 25 |
(Ⅰ)分别写出两种方案的日工资(单位:元)与日行走路程(单位:公里)的函数关系
(Ⅱ)①现按照分层抽样的方工式从,共抽取5人组成爱心服务队,再从这5人中抽取3人当小红帽,求小红帽中恰有1人来自的概率;
②“导引员”小张因为身体原因每天只能行走12公里,如果仅从日工资的角度考虑,请你帮小张选择使用哪种方案会使他的日工资更高?