题目内容
【题目】已知函数.
(1)若是函数的极值点,求的单调区间;
(2)当时,证明:
【答案】(1)递减区间为(-1,0),递增区间为(2)见解析
【解析】
(1)根据函数解析式,先求得导函数,由是函数的极值点可求得参数.求得函数定义域,并根据导函数的符号即可判断单调区间.
(2)当时,.代入函数解析式放缩为,代入证明的不等式可化为,构造函数,并求得,由函数单调性及零点存在定理可知存在唯一的,使得成立,因而求得函数的最小值,由对数式变形化简可证明,即成立,原不等式得证.
(1)函数
可求得,则
解得
所以,定义域为
,
在单调递增,而,
∴当时,,单调递减,
当时,,单调递增,
此时是函数的极小值点,
的递减区间为,递增区间为
(2)证明:当时,
,
因此要证当时,,
只需证明,
即
令,
则,
在是单调递增,
而,
∴存在唯一的,使得,
当,单调递减,当,单调递增,
因此当时,函数取得最小值,
,
,
故,
从而,即,结论成立.
练习册系列答案
相关题目
【题目】为大力提倡“厉行节约,反对浪费”,衡阳市通过随机询问100名性别不同的居民是否做到“光盘”行动,得到如右列联表及附表:经计算:参照附表,得到的正确结论是( )
做不到“光盘”行动 | 做到“光盘”行动 | |
男 | 45 | 10 |
女 | 30 | 15 |
k |
A.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别有关”
B.在犯错误的概率不超过1%的前提下,认为“该市民能否做到‘光盘’行动与性别无关”
C.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别有关”
D.有90%以上的把握认为“该市民能否做到‘光盘’行动与性别无关”