题目内容
【题目】数列是公差为d()的等差数列,它的前n项和记为,数列是公比为q()的等比数列,它的前n项和记为.若,且存在不小于3的正整数,使.
(1)若,求.
(2)若试比较与的大小,并说明理由;
(3)若,是否存在整数m,k,使若存在,求出m,k的值;若不存在,说明理由.
【答案】(1)196;(2);(3)存在,
【解析】
(1)直接代入等差数列的前项和公式,即可得答案;
(2)作差后,再构造函数,利用二次函数的知识判断函数值的正负,即可得答案;
(3)根据题意得,化简得,即可得答案;
(1)由可得,
即,,解得.
(2)依题意,可得,
且显然.
又
所以
设,它是关于的二次函数,它的图象的开口向上,它的对称轴方程,
故是(上的增函数,
所以当时
即,所以.
(3)依题意:得.
即
可得,
所以,
因为故,
,且为奇数,
则其中时,是整数,
故可得存在且.
【题目】工厂质检员从生产线上每半个小时抽取一件产品并对其某个质量指标进行检测,一共抽取了件产品,并得到如下统计表.该厂生产的产品在一年内所需的维护次数与指标有关,具体见下表.
质量指标 | |||
频数 | |||
一年内所需维护次数 |
(1)以每个区间的中点值作为每组指标的代表,用上述样本数据估计该厂产品的质量指标的平均值(保留两位小数);
(2)用分层抽样的方法从上述样本中先抽取件产品,再从件产品中随机抽取件产品,求这件产品的指标都在内的概率;
(3)已知该厂产品的维护费用为元/次,工厂现推出一项服务:若消费者在购买该厂产品时每件多加元,该产品即可一年内免费维护一次.将每件产品的购买支出和一年的维护支出之和称为消费费用.假设这件产品每件都购买该服务,或者每件都不购买该服务,就这两种情况分别计算每件产品的平均消费费用,并以此为决策依据,判断消费者在购买每件产品时是否值得购买这项维护服务?
【题目】拉丁舞,又称拉丁风情舞或自由社交舞,它是拉丁人民在漫长的历史长河中形成的,包含伦巴、恰恰、牛仔舞、桑巴、斗牛舞、深受人民的喜爱.某艺术培训机构为了调查本校学院对拉丁舞的学习情况,分别在刚学习了一个季度的本校大班(8岁以下)及种子班(8岁以上)的学员中各随机抽取了15名学员进行摸底考试,这30名学员考试成绩的茎叶图如图所示.
规定:成绩不低于85分,则认为成绩优秀;成绩低于85分,则认为成绩一般.
(1)根据上述数据填写下列2×2联表:
成绩优秀 | 成绩一般 | 总计 | |
大班 | |||
种子班 | |||
总计 |
判断是否有95%的把握认为成绩优秀或成绩一般与学员的年龄有关;
(2)在大班及种子班的参加摸底考试且成绩优秀的学员中以分层抽样的方式抽取6名学员进行特别集训,集训后,再对这6名学员进行测试,按测试成绩,取前3名授予“舞蹈小精灵”称号,在被授予“舞蹈小精灵”称号的学员中,求种子班的学员恰好有2人的概率.
参考公式及数据:,.
0.100 | 0.050 | 0.025 | 0.010 | |
2.706 | 3.841 | 5.024 | 6.635 |