题目内容

如图,在三棱柱ABC-A1B1C中,已知AC⊥BC,AB⊥BB1,CD⊥平面AA B1B,AC=BC=2.
(I)求证:BB1⊥平面ABC;
(II)设∠CA1D=
π6
,求三棱柱ABC-A1B1C1的体积.
分析:(I)利用直线与平面垂直的判定定理证明BB1⊥平面ABC;
(II)求出CD,在Rt△CDA1中,∠CA1D=
π
6
,求出A1C.然后在Rt△CAA1中,求出AA1,然后求三棱柱ABC-A1B1C1的体积.
解答:解:(Ⅰ)证明:∵AC=BC,D为AB的中点,∴CD⊥AB,
又CD⊥平面AA B1B,.∴CD⊥BB1,
BB1⊥AB,AB∩CD=DF,
∴BB1⊥平面ABC;
(Ⅱ)解:因为AC⊥BC,AC=BC=2所以CD=
2

又在Rt△CDA1中,∠CA1D=
π
6

所以A1C=
CD
sin
π
6
=2
2

又在Rt△CAA1中,AA12=(2
2
2-22=4,
所以AA1=2,
所以所求体积为V=
1
2
×23
=4.
点评:本题考查直线与平面垂直的判定定理,几何体的体积的求法,考查空间想象能力与计算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网