题目内容

12.已知函数f(x)=ex-x2,g(x)=ax+b(a>0),若对?x1∈[0,2],?x2∈[0,2],使得f(x1)=g(x2),则实数a,b的取值范围是(  )
A.0<a≤$\frac{{{e^2}-5}}{2}$,b≥1B.0<a≤$\frac{{{e^2}-5}}{2}$,b≤1C.a≥$\frac{{{e^2}-5}}{2}$,b≥1D.a≥$\frac{{{e^2}-5}}{2}$,b≤1

分析 对?x1∈[0,2],?x2∈[0,2],使得f(x1)=g(x2),等价于x∈[0,2]时f(x)的值域为g(x)值域的子集,利用单调性求得两函数的值域,由集合的包含关系可得不等式,解出即可.

解答 解:因为f′(x)=ex-2x,
令y=ex-2x,可得y′=ex-2,令ex-2=0,解得x=ln2,
y=ex-2x的最小值为:2ln2-2ln2=2-2ln2>0
可得f′(x)=ex-2x>0,所以f(x)在[0,2]上递增,
所以x∈[0,2]时,f(0)≤f(x)≤f(2),即1≤f(x)≤e2-2,
由a>0得g(x)=ax+b在[0,2]上递增,
所以x∈[0,2]时,g(0)≤g(x)≤g(2),即b≤g(x)≤2a+b,
又对?x1∈[0,2],?x2∈[0,2],使得f(x1)=g(x2),
所以有[1,e2-4]⊆[b,2a+b],则$\left\{\begin{array}{l}b≤1\\ 2a+b>{e}^{2}-4\end{array}\right.$,
由e2-4-2a≤b≤1得,a≥$\frac{{e}^{2}-5}{2}$,
故选:D.

点评 本题考查利用导数求函数在闭区间上的最值、函数单调性的应用,考查恒成立问题,本题中对恒成立问题的等价转化是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网