题目内容
【题目】设函数y=f(x)的定义域为D,若对于任意的x1 , x2∈D,当x1+x2=2a时,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究函数f(x)=x3+sinx+2的某一个对称中心,并利用对称中心的上述定义,可得到 … = .
【答案】82
【解析】解:∵f(x)=x3+sinx+2, ∴f'(x)=3x2+cosx,f'(x)=6x﹣sinx,
∴f'(0)=0,
而f(x)+f(﹣x)=x3+sinx+2+﹣x3﹣sinx+2=4,
函数f(x)=x3+sinx+1图象的对称中心的坐标为(0,2),
即x1+x2=0时,总有f(x1)+f(x2)=4,
∴ …
=20×4+f(0)
=82.
所以答案是:82.
【考点精析】认真审题,首先需要了解函数的值(函数值的求法:①配方法(二次或四次);②“判别式法”;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法).
练习册系列答案
相关题目