题目内容
【题目】[选修4-4:坐标系与参数方程]
在极坐标系中,曲线的极坐标方程是,以极点为原点,极轴为轴正半轴(两坐标系取相同的单位长度)的直角坐标系中,曲线的参数方程为: (为参数).
(1)求曲线的直角坐标方程与曲线的普通方程;
(2)将曲线经过伸缩变换后得到曲线,若, 分别是曲线和曲线上的动点,求的最小值.
【答案】(1) (2)
【解析】试题分析:(1)根据x=ρcosθ,y=ρsinθ求出C1,C2的直角坐标方程即可;(2)求出C3的参数方程,根据点到直线的距离公式计算即可.
试题解析:
(1)∵的极坐标方程是,∴,整理得,∴的直角坐标方程为.
曲线: ,∴,故的普通方程为.
(2)将曲线经过伸缩变换后得到曲线的方程为,则曲线的参数方程为(为参数).设,则点到曲线的距离为 .
当时, 有最小值,所以的最小值为.
练习册系列答案
相关题目