题目内容

20.定义运算$(\begin{array}{l}{a}&{b}\\{c}&{d}\end{array})$•$(\begin{array}{l}{e}\\{f}\end{array})$=$(\begin{array}{l}{ae+bf}\\{ce+df}\end{array})$,如$(\begin{array}{l}{1}&{2}\\{0}&{3}\end{array})$•$(\begin{array}{l}{4}\\{5}\end{array})$=$(\begin{array}{l}{14}\\{15}\end{array})$.已知α+β=π,α-β=$\frac{π}{2}$,则$(\begin{array}{l}{sinα}&{cosα}\\{cosα}&{sinα}\end{array})$•$(\begin{array}{l}{cosβ}\\{sinβ}\end{array})$=(  )
A.$(\begin{array}{l}{0}\\{0}\end{array})$B.$(\begin{array}{l}{0}\\{1}\end{array})$C.$(\begin{array}{l}{1}\\{0}\end{array})$D.$(\begin{array}{l}{1}\\{1}\end{array})$

分析 利用新定义、两角和差的正弦与余弦公式即可得出.

解答 解:$(\begin{array}{l}{sinα}&{cosα}\\{cosα}&{sinα}\end{array})$•$(\begin{array}{l}{cosβ}\\{sinβ}\end{array})$=$(\begin{array}{l}{sinαcosβ+cosαsinβ}\\{cosαcosβ+sinαsinβ}\end{array})$=$(\begin{array}{l}{sin(α+β)}\\{cos(α-β)}\end{array})$=$(\begin{array}{l}{sinπ}\\{cos\frac{π}{2}}\end{array})$=$(\begin{array}{l}{0}\\{0}\end{array})$.
故选:A.

点评 本题考查了新定义、两角和差的正弦与余弦公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网