ÌâÄ¿ÄÚÈÝ
ÔÚµÈÑüÌÝÐÎPDCB£¨Í¼1£©ÖУ¬DC¡ÎPB£¬PB=3DC=3£¬PD=
£¬DA¡ÍPB£¬´¹×ãΪA£¬½«¡÷PADÑØADÕÛÆð£¬Ê¹µÃPA¡ÍAB£¬µÃµ½ËÄÀâ׶P-ABCD£¨Í¼2£©£®ÔÚͼ2ÖÐÍê³ÉÏÂÃæÎÊÌ⣺
£¨1£©Ö¤Ã÷£ºÆ½ÃæPAD¡ÍƽÃæPCD£»
£¨2£©µãMÔÚÀâPBÉÏ£¬Æ½ÃæAMC°ÑËÄÀâ׶P-ABCD·Ö³ÉÁ½¸ö¼¸ºÎÌ壨Èçͼ2£©£¬µ±ÕâÁ½¸ö¼¸ºÎÌåµÄÌå»ýÖ®±ÈVPM-ACDVM-ABC=5£º4ʱ£¬Çó
掙术
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö¤Ã÷£ºPD¡¬Æ½ÃæAMC£®
2 |
£¨1£©Ö¤Ã÷£ºÆ½ÃæPAD¡ÍƽÃæPCD£»
£¨2£©µãMÔÚÀâPBÉÏ£¬Æ½ÃæAMC°ÑËÄÀâ׶P-ABCD·Ö³ÉÁ½¸ö¼¸ºÎÌ壨Èçͼ2£©£¬µ±ÕâÁ½¸ö¼¸ºÎÌåµÄÌå»ýÖ®±ÈVPM-ACDVM-ABC=5£º4ʱ£¬Çó
PM |
MB |
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬Ö¤Ã÷£ºPD¡¬Æ½ÃæAMC£®
·ÖÎö£º£¨1£©ÓÉͼ1ÖÐDA¡ÍPB£¬¿ÉµÃÕÛµþºóDA¡ÍAB£¬DA¡ÍPA£¬½ø¶øDC¡ÍPA£¬DC¡ÍDA£¬ÓÉÏßÃæ´¹Ö±µÄÅж¨¶¨ÀíµÃµ½DC¡ÍƽÃæPAD£¬ÔÙÓÉÃæÃæ´¹Ö±µÄÅж¨¶¨ÀíµÃµ½Æ½ÃæPAD¡ÍƽÃæPCD£»
£¨2£©ÉèMN=h£¬Ôò¿ÉµÃVM-ABC=
£¬VP-ABCD=
£¬ÔòVPM-ABCD=VP-ABCD-VM-ABC=
-
£¬½áºÏVPM-ABCD£ºVM-ABC=5£º4£¬¿ÉÇó³öhÖµ£¬½ø¶øµÃµ½
掙术
£¨3£©ÔÚÌÝÐÎABCDÖУ¬Á¬½ÓAC¡¢BD½»ÓÚµãO£¬Á¬½ÓOM£®Ò×Öª¡÷AOB¡×¡÷DOC£¬ËùÒÔÔÚƽÃæPBDÖУ¬ÓÐPD¡ÎMO£¬½ø¶øÓÉÏßÃæƽÐеÄÅж¨¶¨ÀíµÃµ½´ð°¸£®
£¨2£©ÉèMN=h£¬Ôò¿ÉµÃVM-ABC=
h |
3 |
1 |
2 |
1 |
2 |
h |
3 |
PM |
MB |
£¨3£©ÔÚÌÝÐÎABCDÖУ¬Á¬½ÓAC¡¢BD½»ÓÚµãO£¬Á¬½ÓOM£®Ò×Öª¡÷AOB¡×¡÷DOC£¬ËùÒÔÔÚƽÃæPBDÖУ¬ÓÐPD¡ÎMO£¬½ø¶øÓÉÏßÃæƽÐеÄÅж¨¶¨ÀíµÃµ½´ð°¸£®
½â´ð£ºÖ¤Ã÷£º£¨1£©ÒòΪÔÚͼaµÄµÈÑüÌÝÐÎPDCBÖУ¬DA¡ÍPB£¬
ËùÒÔÔÚËÄÀâ׶P-ABCDÖУ¬DA¡ÍAB£¬DA¡ÍPA£®¡£¨1·Ö£©
ÓÖPA¡ÍAB£¬ÇÒDC¡ÎAB£¬ËùÒÔDC¡ÍPA£¬DC¡ÍDA£¬¡£¨2·Ö£©
¶øDA?ƽÃæPAD£¬PA?ƽÃæPAD£¬PA¡ÉDA=A£¬
ËùÒÔDC¡ÍƽÃæPAD£®¡£¨3·Ö£©
ÒòΪDC?ƽÃæPCD£¬
ËùÒÔƽÃæPAD¡ÍƽÃæPCD£®¡£¨4·Ö£©
½â£º£¨2£©ÒòΪDA¡ÍPA£¬ÇÒPA¡ÍAB
ËùÒÔPA¡ÍƽÃæABCD£¬
ÓÖPA?ƽÃæPAB£¬
ËùÒÔƽÃæPAB¡ÍƽÃæABC£®
Èçͼ£¬¹ýM×÷MN¡ÍAB£¬´¹×ãΪN£¬
ÔòMN¡ÍƽÃæABCD£®¡£¨5·Ö£©
ÔÚµÈÑüÌÝÐÎPDCBÖУ¬DC¡ÎPB£¬
PB=3DC=3£¬PD=
£¬DA¡ÍPB£¬
ËùÒÔPA=1£¬AB=2£¬AD=
=1£®¡£¨6·Ö£©
ÉèMN=h£¬ÔòVM-ABC=
S¡÷ABC•h=
£®¡£¨7·Ö£©
VP-ABCD=
SÌÝÐÎABCD•PA=
VPM-ABCD=VP-ABCD-VM-ABC=
-
£®¡£¨8·Ö£©
ÒòΪVPM-ABCD£ºVM-ABC=5£º4£¬
ËùÒÔ£¨
-
£©£º
=5£º4£¬½âµÃh=
£®¡£¨9·Ö£©
ÔÚ¡÷PABÖУ¬
=
=
£¬ËùÒÔBM=
BP£¬MP=
BP£®
ËùÒÔPM£ºMB=1£º2£®¡£¨10·Ö£©
£¨3£©ÔÚÌÝÐÎABCDÖУ¬Á¬½ÓAC¡¢BD½»ÓÚµãO£¬Á¬½ÓOM£®
Ò×Öª¡÷AOB¡×¡÷DOC£¬ËùÒÔ
=
=
£®¡£¨11·Ö£©
ÓÖPM£ºMB=1£º2£¬ËùÒÔ
=
£¬¡£¨12·Ö£©
ËùÒÔÔÚƽÃæPBDÖУ¬ÓÐPD¡ÎMO£®¡£¨13·Ö£©
ÓÖÒòΪPD?ƽÃæAMC£¬MO?ƽÃæAMC£¬
ËùÒÔPD¡ÎƽÃæAMC£®¡£¨14·Ö£©
ËùÒÔÔÚËÄÀâ׶P-ABCDÖУ¬DA¡ÍAB£¬DA¡ÍPA£®¡£¨1·Ö£©
ÓÖPA¡ÍAB£¬ÇÒDC¡ÎAB£¬ËùÒÔDC¡ÍPA£¬DC¡ÍDA£¬¡£¨2·Ö£©
¶øDA?ƽÃæPAD£¬PA?ƽÃæPAD£¬PA¡ÉDA=A£¬
ËùÒÔDC¡ÍƽÃæPAD£®¡£¨3·Ö£©
ÒòΪDC?ƽÃæPCD£¬
ËùÒÔƽÃæPAD¡ÍƽÃæPCD£®¡£¨4·Ö£©
½â£º£¨2£©ÒòΪDA¡ÍPA£¬ÇÒPA¡ÍAB
ËùÒÔPA¡ÍƽÃæABCD£¬
ÓÖPA?ƽÃæPAB£¬
ËùÒÔƽÃæPAB¡ÍƽÃæABC£®
Èçͼ£¬¹ýM×÷MN¡ÍAB£¬´¹×ãΪN£¬
ÔòMN¡ÍƽÃæABCD£®¡£¨5·Ö£©
ÔÚµÈÑüÌÝÐÎPDCBÖУ¬DC¡ÎPB£¬
PB=3DC=3£¬PD=
2 |
ËùÒÔPA=1£¬AB=2£¬AD=
PD2-PA2 |
ÉèMN=h£¬ÔòVM-ABC=
1 |
3 |
h |
3 |
VP-ABCD=
1 |
3 |
1 |
2 |
VPM-ABCD=VP-ABCD-VM-ABC=
1 |
2 |
h |
3 |
ÒòΪVPM-ABCD£ºVM-ABC=5£º4£¬
ËùÒÔ£¨
1 |
2 |
h |
3 |
h |
3 |
2 |
3 |
ÔÚ¡÷PABÖУ¬
BM |
BP |
MN |
PA |
2 |
3 |
2 |
3 |
1 |
3 |
ËùÒÔPM£ºMB=1£º2£®¡£¨10·Ö£©
£¨3£©ÔÚÌÝÐÎABCDÖУ¬Á¬½ÓAC¡¢BD½»ÓÚµãO£¬Á¬½ÓOM£®
Ò×Öª¡÷AOB¡×¡÷DOC£¬ËùÒÔ
DO |
OB |
DC |
AB |
1 |
2 |
ÓÖPM£ºMB=1£º2£¬ËùÒÔ
DO |
OB |
PM |
MB |
ËùÒÔÔÚƽÃæPBDÖУ¬ÓÐPD¡ÎMO£®¡£¨13·Ö£©
ÓÖÒòΪPD?ƽÃæAMC£¬MO?ƽÃæAMC£¬
ËùÒÔPD¡ÎƽÃæAMC£®¡£¨14·Ö£©
µãÆÀ£º±¾Ì⿼²éµÄ֪ʶµãÊÇƽÃæÓëƽÃæ´¹Ö±µÄÅж¨£¬Ö±ÏßÓëƽÃæƽÐеÄÅж¨£¬Àâ׶µÄÌå»ý£¬ÊìÁ·ÕÆÎÕ¿Õ¼äÏßÃæ¹ØϵµÄÅж¨¶¨Àí£¬ÐÔÖʶ¨Àí¼°¼¸ºÎÌØÕ÷Êǽâ´ð±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿