题目内容

【题目】在平面直角坐标系中,定义点P(x1 , y1)、Q(x2 , y2)之间的“直角距离”为L(P,Q)=|x1﹣x2|+|y1﹣y2|,已知点A(x,1)、B(1,2)、C(5,2)三点.
(1)若L(A,B)>L(A,C),求x的取值范围;
(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立,求t的最小值.

【答案】
(1)解:由定义得|x﹣1|+1>|x﹣5|+1,

即|x﹣1|>|x﹣5|,两边平方得8x>24,

解得x>3


(2)解:当x∈R时,不等式|x﹣1|≤|x﹣5|+t恒成立,

也就是t≥|x﹣1|﹣|x﹣5|恒成立,

因为|x﹣1|﹣|x﹣5|≤|(x﹣1)﹣(x﹣5)|=4,所以t≥4,tmin=4.

故t的最小值为:4


【解析】(1)根据定义写出L(A,B),L(A,C)的表达式,最后通过解不等式求出x的取值范围;(2)当x∈R时,不等式L(A,B)≤t+L(A,C)恒成立即当x∈R时,不等式|x﹣1|≤|x﹣5|+t恒成立,运用分离变量,即有t≥|x﹣1|﹣|x﹣5|恒成立,可用绝对值不等式的性质,求得右边的最大值为4,令t不小于4即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网