题目内容
19.设命题p:?x∈R,ax2-2x+1<0,则命题p为假命题的一个充分不必要条件是( )A. | a≥1 | B. | a>1 | C. | a≤1 | D. | a<2 |
分析 根据含有量词的命题的否定关系,以及充分必要条件的定义即可得到结论
解答 解:命题p:?x∈R,ax2-2x+1<0,则命题p为假命题,
即:?x∈R,使ax2-2x+0≥0恒成立为真命题,
∴$\left\{\begin{array}{l}{a>0}\\{△=4-4a≤0}\end{array}\right.$,
解得a≥1,
命题p为假命题的一个充分不必要条件是a>1.
故选:B
点评 本题主要考查充分条件和必要条件的应用,利用命题真假之间的关系是解决本题的关键,比较基础.
练习册系列答案
相关题目
7.某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如下表所示:
(Ⅰ)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?
(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(Ⅲ)学生的积极性与对待班级工作的态度是否有关系?请说明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
积极参加班级工作 | 不积极参加班级工作 | 合计 | |
学习积极性高 | 18 | 7 | 25 |
学习积极性不高 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(Ⅱ)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取两名学生参加某项活动,问两名学生中有1名男生的概率是多少?
(Ⅲ)学生的积极性与对待班级工作的态度是否有关系?请说明理由.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
11.某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如表:
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)分别为30;20.
年产量/亩 | 年种植成本/亩 | 每吨售价 | |
黄瓜 | 4吨 | 1.2万元 | 0.55万元 |
韭菜 | 6吨 | 0.9万元 | 0.3万元 |
8.空间直角坐标系中,已知原点为O,A(1,0,0),B(0,1,0),C(0,0,1),在三棱锥O-ABC中任取一点P(x,y,z),则满足$\sqrt{{x^2}+{y^2}+{z^2}}≤\frac{1}{2}$的概率是( )
A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{10}$ |