题目内容
【题目】定义函数F(a,b)= (a+b﹣|a﹣b|)(a,b∈R),设函数f(x)=﹣x2+2x+4,g(x)=x+2(x∈R)函数F(f(x),g(x))的最大值与零点之和为( )
A.4
B.6
C.
D.
【答案】B
【解析】解:∵F(a,b)= (a+b﹣|a﹣b|)= ,
∴设G(x)=F(f(x),g(x))= .
∵当﹣1≤x≤2时,f(x)≥g(x),此时G(x)=x+2∈[1,4],
此时函数无零点,此时最大值为4,
当x>2或x<﹣1时,f(x)<g(x),G(x)=﹣x2+2x+4=﹣(x﹣1)2+3<4,
综上可得,函数G(x)的最大值为4,
由G(x)=﹣x2+2x+4=0,得方程的两根之和为2,
则函数F(f(x),g(x))的最大值与零点之和为2+4=6,
故选:B.
【考点精析】本题主要考查了函数的最值及其几何意义的相关知识点,需要掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值才能正确解答此题.
【题目】2018年8月31日下午,关于修改个人所得税法的决定经十三届全国人大常委会第五次会议表决通过。2018年10月1日起施行最新起征点和税率。个税起征点提高至每月5000元.设个人月应纳税所得额为元,个人月工资收入为元,三险金(养老保险、失业保险、医疗保险、住房公积金)及其它各类免税额总计为元,则.设月应纳税额为,个税的计算方式一般是分级计算求总和 (如图表所示,共分7级).比如:小陈的应纳税所得额为元,月应交纳税额为元.
税级 | 月应纳税所得额 | 税率 |
1 | 中不超过3000元的部分 | 3% |
2 | 中超过3000元至12000元(含12000元)的部分 | 10% |
3 | 中超过12000元至25000元(含25000元)的部分 | 20% |
4 | 中超过25000元至35000元(含35000元)的部分 | 25% |
5 | 中超过35000元至55000元(含55000元)的部分 | 30% |
6 | 中超过55000元至80000元(含80000元)的部分 | 35% |
7 | 中超过80000元的部分 | 45% |
(1)小王的应纳税所得额元,求;
(2)小张的应纳税所得额元,若元,求;
(3)当时,写出的解析式(请写成分段函数的形式).