题目内容

如图,圆O的圆心O在Rt△ABC的直角边BC上,该圆与直角边AB相切,与斜边AC交于D,E,AD=DE=EC,AB=
14

(Ⅰ)求BC的长;
(Ⅱ)求圆O的半径.
(Ⅰ)由已知及由切割线定理,
有AB2=AD•AE=
1
3
AC•
2
3
AC,
所以AC2=
9
2
AB2.…(3分)
由勾股定理得,
BC=
AC2-AB2
=7.…(5分)
(Ⅱ)设圆O与BC的交点为F,圆O的半径为r.
由割线定理,
得CF•CB=CE•CD=
1
3
AC•
2
3
AC=AB2,…(8分)
即(7-2r)×7=14,
解得r=
5
2
.…(10分)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网