题目内容

对任意的实数a,b,记max{a,b}=
a(a≥b)
b(a<b)
,若F(x)=max{f(x),g(x)}(x∈R),其中奇函数y=f(x)在x=1时有极小值-2,y=g(x)是正比例函数,函数y=f(x)(x≥0)与函数y=g(x)的图象如图所示,则下列关于函数y=F(x)的说法中,正确的是(  )
A.y=F(x)为奇函数
B.y=F(x)有极大值F(1)且有极小值F(-1)
C.y=F(x)在(-3,0)上不是单调函数
D.y=F(x)的最小值为-2且最大值为2
精英家教网
由图象可得g(x)=
1
3
x

精英家教网

根据当x≥0时,由f(x)的图象和奇函数y=f(x)在x=1时有极小值-2,可知:当x≤0时,在x=-1时取得最大值2,及其f(x)的图象如图所示.
而F(x)=
f(x),-3≤x≤0或x≥3
g(x),x<-3或0<x<3

因此当-3≤x≤0时,函数F(x)不单调.
故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网