题目内容
18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,且$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为-1.分析 根据$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为|$\overrightarrow{a}$|与向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值的乘积,即可求得答案.
解答 解:根据数量积的几何意义可知,$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为|$\overrightarrow{a}$|与向量$\overrightarrow{a}$,$\overrightarrow{b}$夹角的余弦值的乘积,
∴$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为|$\overrightarrow{a}$|•cos$\frac{2π}{3}$=2×(-$\frac{1}{2}$)=-1,
∴$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为-1.
故答案为:-1.
点评 本题考查向量投影的定义,熟练记准投影的定义是解决问题的关键,属基础题.
练习册系列答案
相关题目
10.下列关于斜二测画法下的直观图的说法正确的是( )
A. | 互相垂直的两条直线的直观图一定是互相垂直的两条直线 | |
B. | 梯形的直观图可能是平行四边形 | |
C. | 矩形的直观图可能是梯形 | |
D. | 正方形的直观图可能是平行四边形. |
7.已知A={x||x-1|>0},B={x|(x-1)2-3≥0},则A∩B=( )
A. | (-∞,0)∪(2,+∞) | B. | (-∞,1-$\sqrt{3}$]∪[1+$\sqrt{3}$,+∞) | C. | (-∞,1-$\sqrt{3}$]∪[2,+∞) | D. | (-∞,0)∪[1+$\sqrt{3}$,+∞) |