题目内容
【题目】设,若时,恒有,则 .
【答案】-1
【解析】
试题分析:验证发现,
当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,
当x=0时,可得0≤b≤1,结合a+b=0可得-1≤a≤0,
令f(x)=x4-x3+ax+b,即f(1)=a+b=0,
又f′(x)=4x3-3x2+a,f′′(x)=12x2-6x,
令f′′(x)>0,可得x>,则f′(x)=4x3-3x2+a在[0,]上减,在[,+∞)上增,
又-1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,
又x≥0时恒有,结合f(1)=a+b=0知,1必为函数f(x)=x4-x3+ax+b的极小值点,也是最小值点.
故有f′(1)=1+a=0,由此得a=-1,b=1,
故ab=-1.
练习册系列答案
相关题目
【题目】已知函数的定义域,部分对应值如表, 的导函数的图象如图所示,下列关于函数的命题;
①函数的值域为;
②函数在上是减函数;
③如果当时, 最大值是,那么的最大值为;
④当时,函数最多有4个零点.
其中正确命题的序号是_________.