题目内容

已知函数,函数

①当时,求函数的表达式;

②若,函数上的最小值是2 ,求的值;

③在②的条件下,求直线与函数的图象所围成图形的面积.

 

【答案】

.⑵.⑶=.

【解析】

试题分析:⑴∵,

∴当时,; 当时,

∴当时,; 当时,.

∴当时,函数.

⑵∵由⑴知当时,,

∴当时, 当且仅当时取等号.

∴函数上的最小值是,∴依题意得.

⑶由解得

∴直线与函数的图象所围成图形的面积

=.

考点:本题主要考查导数计算,应用导数研究函数的单调性、最值,定积分计算。

点评:典型题,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。求最值的步骤:计算导数、求驻点、讨论驻点附近导数的正负、确定极值、计算的导函数值比较大小。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网