题目内容

已知函数f(x)=x2+(k-2)x+2k-1
(1)若f(1)=16,函数g(x)是R上的奇函数,当x>0时,g(x)=f(x),
(i)求实数k与g(0)的值;
(ii)当x<0时,求g(x)的解析式;
(2)若方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),求实数k的取值范围.
分析:(1)(i)由于f(1)=16,可得12+k-2+2k-1=16,解得即可.利用函数g(x)是R上的奇函数,可得g(-0)=-g(0),解出即可.
(ii)利用奇函数的性质g(-x)=-g(x)即可得出;
(2)由于方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),可得
f(0)=2k-1>0
f(1)=1+k-2+2k-1<0
f(2)=4+2(k-2)+2k-1>0
,解得即可.
解答:解:(1)(i)∵f(1)=16,∴12+k-2+2k-1=16,化为3k=18,解得k=6.
∵函数g(x)是R上的奇函数,∴g(-0)=-g(0),解得g(0)=0.
(ii)由k=6可得f(x)=x2+4x+11.
设x<0,则-x>0.
∵当x>0时g(x)=f(x)=x2+4x+11.
∴g(-x)=x2-4x+11.
∴g(x)=-g(-x)=-x2+4x-11.
(2)∵方程f(x)=0的两根中,一根属于区间(0,1),另一根属于区间(1,2),
f(0)=2k-1>0
f(1)=1+k-2+2k-1<0
f(2)=4+2(k-2)+2k-1>0
,解得
1
2
<k<
2
3

∴实数k的取值范围是(
1
2
2
3
)
点评:本题考查了函数的奇偶性、二次函数的图象与性质、函数的零点等基础知识与基本方法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网