题目内容
设两个非零向量e1和e2不共线.
(1)如果
=e1-e2,
=3e1+2e2,
=-8e1-2e2,
求证:A、C、D三点共线;
(2)如果
=e1+e2,
=2e1-3e2,
=2e1-ke2,且A、C、D三点共线,求k的值.
(1)如果
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851917221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851933225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
求证:A、C、D三点共线;
(2)如果
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851917221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851933225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
(1)证明见解析(2)k=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852089214.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852089214.gif)
(1)证明
=e1-e2,
=3e1+2e2,
=-8e1-2e2,
=
+
=4e1+e2
=-
(-8e1-2e2)=-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852261206.gif)
,
∴
与
共线,
又∵
与
有公共点C,
∴A、C、D三点共线.
(2)解
=
+
=(e1+e2)+(2e1-3e2)=3e1-2e2,
∵A、C、D三点共线,
∴
与
共线,从而存在实数
使得
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852604181.gif)
,
即3e1-2e2=
(2e1-ke2),由平面向量的基本定理,
得
,解之得
=
,k=
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851917221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851933225.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852167220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851917221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851933225.gif)
=-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852261206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852261206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852167220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852167220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
∴A、C、D三点共线.
(2)解
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852167220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851917221.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851933225.gif)
∵A、C、D三点共线,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852167220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852604181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852167220.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852604181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125851995222.gif)
即3e1-2e2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852604181.gif)
得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852760456.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852604181.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852807211.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823125852089214.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目