题目内容

“a=-3”是“函数f(x)=|x-a|在区间[-3,+∞)上为增函数”的    (   )

A.充分不必要条件                        B.必要不充分条件

C.充要条件                             D.既不充分也不必要条件

 

【答案】

A

【解析】

试题分析:∵函数f(x)=|x-a|在区间[-3,+∞)上为增函数,∴a≤-3,∴“a=-3”是“函数f(x)=|x-a|在区间[-3,+∞)上为增函数”的充分不必要条件,故选A

考点:本题考查了充要条件的判断

点评:熟练掌握充要条件的概念及绝对值函数的单调性是解决此类问题的关键,属基础题

 

练习册系列答案
相关题目

已知函数f(x)=cos(2x+)+sinx·cosx

⑴ 求函数f(x)的单调减区间;       ⑵ 若xÎ[0,],求f(x)的最值;

 ⑶ 若f(a)=,2a是第一象限角,求sin2a的值.

【解析】第一问中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-+2kp,

解得+kp≤x≤+kp 

第二问中,∵xÎ[0, ],∴2x-Î[-,],

∴当2x-=-,即x=0时,f(x)min=-,

当2x-, 即x=时,f(x)max=1

第三问中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=

利用构造角得到sin2a=sin[(2a-)+]

解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x     ………2分

sin2x-cos2x=sin(2x-)                 ……………………3分

⑴ 令+2kp≤2x-+2kp,

解得+kp≤x≤+kp          ……………………5分

∴ f(x)的减区间是[+kp,+kp](kÎZ)            ……………………6分

⑵ ∵xÎ[0, ],∴2x-Î[-,],           ……………………7分

∴当2x-=-,即x=0时,f(x)min=-,        ……………………8分

当2x-, 即x=时,f(x)max=1          ……………………9分

⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp

∴ 2kp-<2a-+2kp,∴ cos(2a-)=,   ……………………11分

∴ sin2a=sin[(2a-)+]

=sin(2a-)·cos+cos(2a-)·sin   ………12分

××

 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网