题目内容
(本小题满分12分)
已知向量
,
,设函数
,且
的图象过点
和点
.
(Ⅰ)求
的值;
(Ⅱ)将
的图象向左平移
(
)个单位后得到函数
的图象.若
的图象上各最高点到点
的距离的最小值为1,求
的单调增区间.
已知向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813914797.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813930758.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813930621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813945562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813977687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813992658.png)
(Ⅰ)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814008435.png)
(Ⅱ)将
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813945562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814039324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814055537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814117460.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
(I)
.
(II)函数
的单调递增区间为
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814133628.png)
(II)函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814179852.png)
试题分析:(1)由题意知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538141951164.png)
根据
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813945562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813977687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813992658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538142571740.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814133628.png)
(2)由(1)知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538143351434.png)
由题意知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538143671336.png)
依题意知到点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814382426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814398429.png)
将其代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814491867.png)
可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814507557.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538145231170.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814538866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814569930.png)
得到
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814179852.png)
试题解析:(1)由题意知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538141951164.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813945562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813977687.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053813992658.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538142571740.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538147251383.png)
解得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814133628.png)
(2)由(1)知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538147881413.png)
由题意知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538148031332.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814835533.png)
由题意知:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814866486.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814897426.png)
即到点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814382426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814398429.png)
将其代入
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814491867.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814055537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814507557.png)
因此
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240538145231170.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814538866.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814569930.png)
所以,函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814070548.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824053814179852.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目