题目内容

【题目】口袋中有大小、形状、质地相同的两个白球和三个黑球.现有一抽奖游戏规则如下:抽奖者每次有放回的从口袋中随机取出一个球,最多取球2n1(n)次.若取出白球的累计次数达到n1时,则终止取球且获奖,其它情况均不获奖.记获奖概率为

1)求

2)证明:

【答案】1;(2)见解析

【解析】

1)分别求出每次取出的球是白球和黑球的概率,由题意知最多抽3次,获奖即连续两次为白球或者前两次中有一次是白球第三次也是白球,求出其概率和即可;

2)依据取出白球次数是,可分为以下情况:前n次取出n次白球,第n+1次取出的是白球,前n+1次取出n次白球,第n+2次取出的是白球,,前2n次取出n次白球,第2n+1次取出的是白球,分别求出对应的概率,相加可得,通过作差结合组合数性质即可得结果.

1)根据题意,每次取出的球是白球的概率为,取出的球是黑球的概率为

所以

2)证明:累计取出白球次数是的情况有:

n次取出n次白球,第n+1次取出的是白球,概率为

n+1次取出n次白球,第n+2次取出的是白球,概率为

2n1次取出n次白球,第2n次取出的是白球,概率为

2n次取出n次白球,第2n+1次取出的是白球,概率为

因此

因为

所以,因此

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网