题目内容
【题目】下列5个命题中正确命题的个数是( )
①对于命题p:x∈R,使得x2+x+1<0,则綈p:x∈R,均有x2+x+1>0;
②m=3是直线(m+3)x+my-2=0与直线mx-6y+5=0互相垂直的充要条件;
③已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则线性回归方程为=1.23x+0.08;
④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为;
⑤曲线y=x2与y=x所围成图形的面积是S= (x-x2)dx.
A.2 B.3
C.4 D.5
【答案】A
【解析】①错,应当是綈p:x∈R,均有x2+x+1≥0;②错,当m=0时,两直线也垂直,所以m=3是两直线垂直的充分不必要条件;③正确,将样本点的中心的坐标代入,满足方程;④错,实数x,y∈[-1,1]表示的平面区域为边长为2的正方形,其面积为4,而x2+y2<1所表示的平面区域的面积为π,所以满足x2+y2≥1的概率为;⑤正确,由定积分的几何意义可知.
练习册系列答案
相关题目