题目内容
【题目】(12分) 在△ABC中,a、b、c分别为角A、B、C的对边,且,
(1)求的度数;
(2)若, ,求b和c的值.
【答案】解:(1)由题设得2[1-cos(B+C)]-(2cos2A-1)=,
∵ cos(B+C)=-cosA,∴ 2(1+cosA)-2cos2A+1=,
整理得(2cosA-1)2=0,∴ cosA=,∴ A=60°.
(2)∵ cosA====
∴=,∴ bc=2. 又∵ b+c=3,∴ b=1, c=2或b=2, c=1.
【解析】试题分析:本试题主要是考查了解三角形中边角的转化,以及余弦定理的运用.(1)将已知的条件,利用倍角进行降幂,得到关于角的三角方程,从中求解方程即可;(2)由余弦定理得,将代入,化简得,最后联立方程,求解方程即可得到的值.
试题解析:(1)由条件得
∴即,也就是
∴,∵,∴
(2)由余弦定理得, 即,也就是
所以,又因为,所以
联立方程,解得或.
练习册系列答案
相关题目
【题目】某中学举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本,对高一年级的100名学生的成绩进行统计,并按, , , , , 分组,得到成绩分布的频率分布直方图(如图)。
(1)若规定60分以上(包括60分)为合格,计算高一年级这次竞赛的合格率;
(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此,估计高一年级这次知识竞赛的学生的平均成绩;
(3)若高二年级这次竞赛的合格率为,由以上统计数据填写下面列联表,并问是否有的把握认为“这次知识竞赛的成绩与年级有关”。
高一 | 高二 | 合计 | |
合格人数 | |||
不合格人数 | |||
合计 |
附:参考数据与公式
高一 | 合计 | ||
合格人数 | a | b | a+b |
不合格人数 | c | d | c+d |
合计 | a+c | b+d | n |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |