题目内容
设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.
(1) a∈(e,+∞).
(2) 当a≤0或a=e-1时,f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2. 证明见解析
解析
练习册系列答案
相关题目
题目内容
设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数.
(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;
(2)若g(x)在(-1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.
(1) a∈(e,+∞).
(2) 当a≤0或a=e-1时,f(x)的零点个数为1,当0<a<e-1时,f(x)的零点个数为2. 证明见解析
解析