题目内容

【题目】已知函数yf(x)和yg(x)在[-2,2]上的图象如图所示.给出下列四个命题:

①方程f[g(x)]=0有且仅有6个根;②方程g[f(x)]=0有且仅有3个根;

③方程f[f(x)]=0有且仅有7个根;④方程g[g(x)]=0有且仅有4个根.

其中正确命题的序号为________.

【答案】①④

【解析】①设tg(x),则由f[g(x)]=0,得f(t)=0,则t1=0或-2<t2<-1或1<t3<2.当t1=0时,g(x)=0有2个不同根;当-2<t2<-1时,g(x)=t2有2个不同根;当1<t3<2时,g(x)=t3有2个不同根,∴方程f[g(x)]=0有且仅有6个根,故①正确.

②设tf(x),若g[f(x)]=0,则g(t)=0,则-2<t1<-1或0<t2<1.当-2<t1<-1时,f(x)=t1有1个根;当0<t2<1时,f(x)=t2有3个不同根,

∴方程g[f(x)]=0有且仅有4个根,故②错误.

③设tf(x),若f[f(x)]=0,则f(t)=0,则t1=0或-2<t2<-1或1<t3<2.当t1=0时,f(x)=t1有3个不同根;当-2<t2<-1时,f(x)=t2有1个根;当1<t3<2时,f(x)=t3有1个根,∴方程f[f(x)]=0有且仅有5个根,故③错误.

④设tg(x),若g[g(x)]=0,则g(t)=0,则-2<t1<-1或0<t2<1.当-2<t1<-1时,g(x)=t1有2个不同根;当0<t2<1时,g(x)=t2有2个不同根,∴方程g[g(x)]=0有且仅有4个根,故④正确.

综上,命题①④正确.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网