ÌâÄ¿ÄÚÈÝ
18£®ÒÑÖªÅ×ÎïÏߵĶ¥µãÊÇ×ø±êÔµãO£¬½¹µãFÔÚxÖáÕý°ëÖáÉÏ£¬Å×ÎïÏßÉÏÒ»µã£¨3£¬m£©µ½½¹µã¾àÀëΪ4£¬¹ýµãFµÄÖ±ÏßlÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£®£¨¢ñ£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨¢ò£©ÈôµãPÔÚÅ×ÎïÏß×¼ÏßÉÏÔ˶¯£¬Æä×Ý×ø±êµÄÈ¡Öµ·¶Î§ÊÇ[-2£¬2]£¬ÇÒ$\overrightarrow{PA}•\overrightarrow{PB}=16$£¬µãQÊÇÒÔABΪֱ¾¶µÄÔ²Óë×¼ÏßµÄÒ»¸ö¹«¹²µã£¬ÇóµãQµÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨¢ñ£©Éè³öÅ×ÎïÏß·½³Ì£¬ÀûÓÃÅ×ÎïÏßÉÏÒ»µã£¨3£¬m£©µ½½¹µã¾àÀëΪ4£¬Çó³öp£¬¼´¿ÉÇóÅ×ÎïÏߵķ½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪx=ty+1£¬ÁªÁ¢Å×ÎïÏßÏûÈ¥x£¬ÀûÓÃΤ´ï¶¨Àí£¬½áºÏ$\overrightarrow{PA}•\overrightarrow{PB}=16$£¬È·¶¨2tµÄ·¶Î§£¬¸ù¾ÝÅ×ÎïÏߵĶ¨Òå¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÏàÇУ¬¿ÉµÃµãQµÄ×Ý×ø±êΪ$\frac{{{y_1}+{y_2}}}{2}=2t$£¬¼´¿ÉÇó³öµãQµÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨¢ñ£©ÉèÅ×ÎïÏß·½³ÌΪy2=2px£¨p£¾0£©¡£¨1·Ö£©
ÓÉÌâÒâ¿ÉµÃ£º$3+\frac{p}{2}=4$£¬¡àp=2¡£¨3·Ö£©
ËùÇóÅ×ÎïÏß·½³ÌΪy2=4x¡£¨4·Ö£©
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³ÌΪx=ty+1£¬
ÁªÁ¢Å×ÎïÏßÏûÈ¥x£¬µÃy2=4£¨ty+1£©£¬¼´y2-4ty-4=0£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ôòy1+y2=4t£¬y1y2=-4£¬
ËùÒÔ${x_1}{x_2}=£¨t{y_1}+1£©£¨t{y_2}+1£©={t^2}{y_1}{y_2}+t£¨{y_1}+{y_2}£©+1=1$£¬${x_1}+{x_2}=4{t^2}+2$¡£¨7·Ö£©
ÓÉÌõ¼þ¿ÉÉèPµÄ×ø±êΪ£¨-1£¬a£©£¨-2¡Üa¡Ü2£©£¬
Ôò$\overrightarrow{PA}•\overrightarrow{PB}$=${x_1}{x_2}+£¨{x_1}+{x_2}£©+1+{y_1}{y_2}-a£¨{y_1}+{y_2}£©+{a^2}$=1+4t2+2+1-4-4at+a2=4t2-4at+a2=£¨2t-a£©2=16£®
ËùÒÔ2t-4=a»ò2t+4=a£¬¶ø-2¡Üa¡Ü2£¬
ËùÒÔ2¡Ü2t¡Ü6»ò-6¡Ü2t¡Ü-2¡£¨10·Ö£©
¸ù¾ÝÅ×ÎïÏߵĶ¨Òå¿ÉÖª£¬ÒÔABΪֱ¾¶µÄÔ²ÓëÅ×ÎïÏßµÄ×¼ÏßÏàÇУ¬
ËùÒÔµãQµÄ×Ý×ø±êΪ$\frac{{{y_1}+{y_2}}}{2}=2t$£¬
´Ó¶øµãQµÄ×Ý×ø±êµÄÈ¡Öµ·¶Î§ÊÇ[-6£¬-2]¡È[2£¬6]¡£¨13·Ö£©
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³Ì£¬¿¼²éÖ±ÏßÓëÅ×ÎïÏßµÄλÖùØϵ£¬¿¼²éÏòÁ¿ÖªÊ¶µÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | 10 | B£® | 5 | C£® | 3 | D£® | 1 |
A£® | $\frac{7}{5}$ | B£® | $\frac{7}{4}$ | C£® | $\frac{7}{3}$ | D£® | $\frac{7}{2}$ |
A£® | x-2y=0 | B£® | x+2y-4=0 | C£® | 2x+y-5=0 | D£® | 2x-y-1=0 |