题目内容
(2012•河北模拟)定义在[1,+∞)上的函数f(x)满足:①f(2x)=cf(x)(c为正常数);②当2≤x≤4时,f(x)=1-(x-3)2,若函数f(x)的图象上所有极大值对应的点均落在同一条直线上,则c等于( )
分析:由已知可得分段函数f(x)的解析式,进而求出三个函数的极值点坐标,根据三点共线,则任取两点确定的直线斜率相等,可以构造关于c的方程,解方程可得答案.
解答:解:∵当2≤x≤4时,f(x)=1-(x-3)2
当1≤x<2时,2≤2x<4,
则f(x)=
f(2x)=
[1-(2x-3)2]
此时当x=
时,函数取极大值
当2≤x≤4时,f(x)=1-(x-3)2
此时当x=3时,函数取极大值1
当4<x≤8时,2<
x≤4
则f(x)=cf(
x)=c(1-(
x-3)2,
此时当x=6时,函数取极大值c
∵函数的所有极大值点均落在同一条直线上,
即点(
,
),(3,1),(6,c)共线,
∴
=
解得c=1或2.
故选C
当1≤x<2时,2≤2x<4,
则f(x)=
1 |
c |
1 |
c |
此时当x=
3 |
2 |
1 |
c |
当2≤x≤4时,f(x)=1-(x-3)2
此时当x=3时,函数取极大值1
当4<x≤8时,2<
1 |
2 |
则f(x)=cf(
1 |
2 |
1 |
2 |
此时当x=6时,函数取极大值c
∵函数的所有极大值点均落在同一条直线上,
即点(
3 |
2 |
1 |
c |
∴
1-
| ||
3-
|
c-1 |
6-3 |
解得c=1或2.
故选C
点评:本题考查的知识点是三点共线,函数的极值,其中根据已知分析出分段函数f(x)的解析式,进而求出三个函数的极值点坐标,是解答本题的关键.
练习册系列答案
相关题目