题目内容
【题目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+m﹣1=0}若A∪B=A,求实数m的取值范围.
【答案】解:∵A={x|x2﹣3x+2=0}={1,2},
B={x|x2﹣mx+m﹣1=0}={x|(x﹣1)[x﹣(m﹣1)]=0}={1,m﹣1},
∵A∪B=A,
∴m﹣1=2,或m﹣1=1,
解得m=3,或m=2.
又由m=2时,m﹣1=1集合B不满足集合元素的互异性
∴实数m的取值范围是{3}
【解析】A={x|x2﹣3x+2=0}={1,2},B={x|x2﹣mx+m﹣1=0}={x|(x﹣1)[x﹣(m﹣1)]=0},由A∪B=A,知m﹣1=2,或m﹣1=1,由此能求出实数m的取值范围.
【考点精析】通过灵活运用集合的并集运算,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立即可以解答此题.
练习册系列答案
相关题目