ÌâÄ¿ÄÚÈÝ
5£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬µãP£¨$\sqrt{3}$£¬y0£©ÔÚ¸ÃË«ÇúÏßÉÏ£¬Èô$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬ÔòË«ÇúÏߵĽ¥½üÏß·½³ÌΪ£¨¡¡¡¡£©A£® | y=¡Àx | B£® | $y=¡À\sqrt{2}x$ | C£® | $y=¡À\sqrt{3}x$ | D£® | y=¡À2x |
·ÖÎö Çó³öË«ÇúÏߵĽ¹µã£¬ÇóµÃÏòÁ¿$\overrightarrow{P{F}_{1}}$£¬$\overrightarrow{P{F}_{2}}$µÄ×ø±ê£¬ÓÉÌõ¼þÔËÓÃÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾ¿ÉµÃ·½³Ì£¬ÔÙÓÉPÂú×ãË«ÇúÏß·½³Ì£¬½â·½³Ì¿ÉµÃb£¬ÔÙÓÉË«ÇúÏߵĽ¥½üÏß·½³Ì¼´¿ÉµÃµ½£®
½â´ð ½â£ºË«ÇúÏß$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{{b}^{2}}$=1£¨b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¨-$\sqrt{2+{b}^{2}}$£¬0£©£¬F2£¨$\sqrt{2+{b}^{2}}$£¬0£©£¬
µãP£¨$\sqrt{3}$£¬y0£©ÔÚ¸ÃË«ÇúÏßÉÏ£¬
Ôò$\frac{3}{2}$-$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1£¬¼´ÓÐy02=$\frac{1}{2}$b2£¬¢Ù
ÓÖ$\overrightarrow{P{F}_{1}}$=£¨-$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£¬-y0£©£¬
$\overrightarrow{P{F}_{2}}$=£¨$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£¬-y0£©£¬
Èô$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0£¬
Ôò£¨-$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£©•£¨$\sqrt{2+{b}^{2}}$-$\sqrt{3}$£©+y02=0£¬¢Ú
½âµÃb2=2£¬¼´b=$\sqrt{2}$£®
¼´ÓÐË«ÇúÏߵĽ¥½üÏß·½³ÌΪy=¡À$\frac{b}{\sqrt{2}}$x£®
¼´Îªy=¡Àx£®
¹ÊÑ¡A£®
µãÆÀ ±¾Ì⿼²éË«ÇúÏߵķ½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²é½¥½üÏß·½³ÌµÄÇ󷨣¬Í¬Ê±¿¼²éÏòÁ¿µÄÊýÁ¿»ýµÄ×ø±ê±íʾºÍÏòÁ¿´¹Ö±µÄÌõ¼þ£¬ÊôÓÚÖеµÌ⣮
A£® | ƽÐÐ | B£® | Ïཻ | C£® | ÒìÃæ | D£® | ÒÔÉ϶¼ÓпÉÄÜ |
A£® | $\frac{1}{12}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{5}$ | D£® | $\frac{1}{10}$ |