题目内容
已知a1=1,点(an,an+1)在函数f(x)=x2+4x+2的图象上,其中n=1,2,3,4,…(1)证明:数列{lg(an+2)}是等比数列;
(2)设数列{an+2}的前n项积为Tn,求Tn及数列{an}的通项公式;
(3)已知bn是
1 |
an+1 |
1 |
an+3 |
3 |
8 |
1 |
2 |
分析:(1)点(an,an+1)代入函数关系式整理可得an+1+2=(an+2)2,两边取对数求得lg(an+1+2)=2lg(an+2)
判断出{lg(an+2)}是等比数列.
(2)根据数列{lg(an+2)}的通项公式求得an,进而利用等比数列的求和公式求得lgTn,进而求得Tn.
(3)根据题意知bn=
(
+
)整理求得Sn=
-
,进而可判断出Sn≥S1同时利用
-
<
进而证明原式.
判断出{lg(an+2)}是等比数列.
(2)根据数列{lg(an+2)}的通项公式求得an,进而利用等比数列的求和公式求得lgTn,进而求得Tn.
(3)根据题意知bn=
1 |
2 |
1 |
an+1 |
1 |
an+3 |
1 |
2 |
1 |
32n-1 |
1 |
2 |
1 |
32n-1 |
1 |
2 |
解答:(1)证明:由已知an+1=an2+4an+2,
∴an+1+2=(an+2)2
∵a1=1?an+2>1,两边取对数,得lg(an+1+2)=2lg(an+2)
∴{lg(an+2)}是等比数列,公比为2,首项为lg(a1+2)=lg3
(2)解:由(1)得lg(an+2)=2n-1lg3=lg32n-1,
∴an=32n-1-2,
∵lgTn=lg[(a1+2)(a2+2)(an+2)]=lg(a1+2)+lg(a2+2)+…+lg(an+2)=
=lg32n-1
∴Tn=32n-1
(3)解:
∵bn=
(
+
)=
(
+
)=
=
-
=
-
Sn=
-
=
-
,
显然bn>0,
∴Sn≥S1=
,
又Sn=
-
<
,
∴
≤Sn<
.
∴an+1+2=(an+2)2
∵a1=1?an+2>1,两边取对数,得lg(an+1+2)=2lg(an+2)
∴{lg(an+2)}是等比数列,公比为2,首项为lg(a1+2)=lg3
(2)解:由(1)得lg(an+2)=2n-1lg3=lg32n-1,
∴an=32n-1-2,
∵lgTn=lg[(a1+2)(a2+2)(an+2)]=lg(a1+2)+lg(a2+2)+…+lg(an+2)=
(2n-1)lg3 |
2-1 |
∴Tn=32n-1
(3)解:
∵bn=
1 |
2 |
1 |
an+1 |
1 |
an+3 |
1 |
2 |
1 |
32n-1-1 |
1 |
32n-1+1 |
32n-1 |
32n-1 |
1 |
32n-1-1 |
1 |
32n-1 |
=
1 |
an+1 |
1 |
an+1+1 |
Sn=
1 |
a1+1 |
1 |
an+1+1 |
1 |
2 |
1 |
32n-1 |
显然bn>0,
∴Sn≥S1=
3 |
8 |
又Sn=
1 |
2 |
1 |
32n-1 |
1 |
2 |
∴
3 |
8 |
1 |
2 |
点评:本题主要考查了等比数列的性质,不等式的应用,数列的求和等问题.考查了学生推理能力和运算能力.
练习册系列答案
相关题目