题目内容

已知a1=1,点(an,an+1)在函数f(x)=x2+4x+2的图象上,其中n=1,2,3,4,…
(1)证明:数列{lg(an+2)}是等比数列;
(2)设数列{an+2}的前n项积为Tn,求Tn及数列{an}的通项公式;
(3)已知bn
1
an+1
1
an+3
的等差中项,数列{bn}的前n项和为Sn,求证:
3
8
Sn
1
2
分析:(1)点(an,an+1)代入函数关系式整理可得an+1+2=(an+2)2,两边取对数求得lg(an+1+2)=2lg(an+2)
判断出{lg(an+2)}是等比数列.
(2)根据数列{lg(an+2)}的通项公式求得an,进而利用等比数列的求和公式求得lgTn,进而求得Tn
(3)根据题意知bn=
1
2
(
1
an+1
+
1
an+3
)
整理求得Sn=
1
2
-
1
32n-1
,进而可判断出Sn≥S1同时利用
1
2
-
1
32n-1
1
2
进而证明原式.
解答:(1)证明:由已知an+1=an2+4an+2,
∴an+1+2=(an+2)2
∵a1=1?an+2>1,两边取对数,得lg(an+1+2)=2lg(an+2)
∴{lg(an+2)}是等比数列,公比为2,首项为lg(a1+2)=lg3
(2)解:由(1)得lg(an+2)=2n-1lg3=lg32n-1
an=32n-1-2
∵lgTn=lg[(a1+2)(a2+2)(an+2)]=lg(a1+2)+lg(a2+2)+…+lg(an+2)=
(2n-1)lg3
2-1
=lg32n-1

Tn=32n-1
(3)解:
bn=
1
2
(
1
an+1
+
1
an+3
)=
1
2
(
1
32n-1-1
+
1
32n-1+1
)=
32n-1
32n-1
=
1
32n-1-1
-
1
32n-1

=
1
an+1
-
1
an+1+1

Sn=
1
a1+1
-
1
an+1+1
=
1
2
-
1
32n-1

显然bn>0,
SnS1=
3
8

Sn=
1
2
-
1
32n-1
1
2

3
8
Sn
1
2
点评:本题主要考查了等比数列的性质,不等式的应用,数列的求和等问题.考查了学生推理能力和运算能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网