题目内容
17.设f(x)是定义在R上的恒不为零的函数,对?x,y∈R,都有f(x)•f(y)=f(x+y),若数列{an}满足a1=$\frac{1}{3},{a_n}=f(n),n∈{N^*}$,且其前n项和Sn对任意的正整数n都有Sn≤M成立,则M的最小值是( )A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 根据f(x)•f(y)=f(x+y),令x=n,y=1,可得数列{an}是以$\frac{1}{3}$为首项,以$\frac{1}{3}$为公比的等比数列,进而可以求得Sn,进而Sn的取值范围.
解答 解:∵对任意x,y∈R,都有f(x)•f(y)=f(x+y),
∴令x=n,y=1,得f(n)•f(1)=f(n+1),
即$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{f(n+1)}{f(n)}$=f(1)=$\frac{1}{3}$,
∴数列{an}是以$\frac{1}{3}$为首项,以$\frac{1}{3}$为公比的等比数列,
∴an=f(n)=($\frac{1}{3}$)n,
∴Sn=$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{1}{2}$-$\frac{1}{2}$($\frac{1}{3}$)n∈[$\frac{1}{6}$,$\frac{1}{2}$).
故选C.
点评 本题主要考查了等比数列的求和问题,解题的关键是根据对任意x,y∈R,都有f(x)•f(y)=f(x+y)得到数列{an}是等比数列,属中档题.
练习册系列答案
相关题目
5.一名射击运动员对靶射击,直到第一次命中为止,若每次命中的概率是0.6,且各次射击结果互不影响,现在有4颗子弹,则命中后剩余子弹数X的均值为( )
A. | 2.44 | B. | 3.376 | C. | 2.376 | D. | 2.4 |