题目内容

【题目】如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,侧棱SD⊥底面ABCD,点E是SC的中点,点F在SB上,且EF⊥SB.
(1)求证:SA∥平面BDE;
(2)求证SB⊥平面DEF;

【答案】证明:(1)如图,

连接AC交BD于点O,连接OE.
∵点O、E分别为AC、SC的中点,
∴OE∥SA,又OE平面BDE,SA平面BDE,
∴SA∥平面BDE;
(2)证明:∵SD=DC,E是SC的中点,∴DE⊥SC,
又SD⊥底面ABCD,∴平面SDC⊥平面ABCD,
∵底面ABCD是矩形,∴BC⊥平面SDC,
∴BC⊥DE,
又SC∩BC=C,∴DE⊥平面SBC,
又SB平面SBC,∴SB⊥DE,
又EF⊥SB,
EF∩ED=E,
∴SB⊥平面EFD;
【解析】(1)连接AC交BD于点O,连接OE.然后利用三角形中位线的性质可得OE∥SA,再由线面平行的判定定理证得SA∥平面BDE;
(2)由SD=DC,E是SC的中点可得DE⊥SC,再由面面垂直的判定和性质得到BC⊥平面SDC,从而得到BC⊥DE,进一步得到SB⊥DE,结合已知EF⊥SB,由线面垂直的判定得结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网