题目内容
如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)F1是椭圆的左焦点,C是椭圆上的任一点,证明:;
(3)过且与AB垂直的直线交椭圆于P、Q,若的面积是20 ,求此时椭圆的方程.
(1);(2)详见解析;(3)
解析试题分析:(1)由椭圆方程可知。将代入椭圆方程可得,分析可知点在第一象限,所以。由两直线平行斜率相等,可得,解得,所以,从而可得离心率。(2)由椭圆的定义知,且,在中用余弦定理可得,用基本不等式可证得,即,所以在中。(3)由(1)可得,即直线的斜率为,所以直线的斜率为,又因为过点可得直线的方程为,将此直线方程与椭圆方程联立消去得关于的一元二次方程,可得根与系数的关系。可将分割长以为同底的两个三角形,两三角形的高的和为(还可用弦长公式求在用点到线的距离公式求高,然后再求面积)。根据三角形面积为可求的值,从而可得椭圆方程。
(1)易得 4分
(2)证:由椭圆定义得:
8分
(3)解:设直线PQ的方程为 .代入椭圆方程消去x得:
,整理得:
∴
因此a2=50,b2=25,所以椭圆方程为 12分
考点:1椭圆的简单几何性质;2余弦定理;3基本不等式;4直线与椭圆的位置关系问题。
练习册系列答案
相关题目