题目内容

已知椭圆经过点,其离心率
(1)求椭圆的方程;
(2)过坐标原点作不与坐标轴重合的直线交椭圆两点,过轴的垂线,垂足为,连接并延长交椭圆于点,试判断随着的转动,直线的斜率的乘积是否为定值?说明理由.

(1);(2)直线的斜率的乘积是定值

解析试题分析:(1)由椭圆的离心率可得,又点满足方程可得,可解得,所以知椭圆的方程;(2)设直线方程是,可得,可得直线方程是,与椭圆方程联立,由韦达定理代入最终可化为
解:(1)∵,∴
∵点在椭圆上,∴
解得,∴椭圆的方程是;  
(2)设直线方程是
  ,直线的斜率是
直线方程是
,得


直线的斜率的乘积是定值
考点:1.椭圆的标准方程与几何性质;2.直线与椭圆;

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网