题目内容
在
中,
分别是角A、B、C的对边,![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130341104.png)
,且
.
(1)求角A的大小;
(2)求
的值域.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813002544.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813018447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130341104.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813049489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813065414.png)
(1)求角A的大小;
(2)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130961137.png)
(1)
;(2)(
].
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813112409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813127420.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130341104.png)
,且
,
∵(2b-c)cosA= acosC,
∴(2sinB-sinC)cosA=sinAcosC.
即2sinBcosA=sinAcosC+sinCcosA
=sin(A+C)
∵A+B+C=π, A+C=π-B,
∴sin(A+C)=sinB,
∴2sinBcosA=sinB,∵0<B<π,∴sinB≠0.
∴cosA=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813190338.png)
∵0<A<π,∴A=
.
(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130961137.png)
=1-cos2B+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813268976.png)
=1-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813268976.png)
=1+sin(2B-
),
由(1)知A=
,B+C=
,所以
0<B<
,-
<2B-
<
,-
<sin(2B-
)≤1,
函数
的值域是(
].
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130341104.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813049489.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813065414.png)
∵(2b-c)cosA= acosC,
∴(2sinB-sinC)cosA=sinAcosC.
即2sinBcosA=sinAcosC+sinCcosA
=sin(A+C)
∵A+B+C=π, A+C=π-B,
∴sin(A+C)=sinB,
∴2sinBcosA=sinB,∵0<B<π,∴sinB≠0.
∴cosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813190338.png)
∵0<A<π,∴A=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813112409.png)
(2)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130961137.png)
=1-cos2B+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813268976.png)
=1-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813268976.png)
=1+sin(2B-
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813299420.png)
由(1)知A=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813112409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813330493.png)
0<B<
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813330493.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813299420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813299420.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813595494.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813190338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813299420.png)
函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408232118130961137.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823211813127420.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目