题目内容
13.填空题:(1)已知等差数列2,6,10,14,…,则d=4,an=4n-2,a10=38;
(2)已知等差数列12,10,8,…,则d=-2,an=-2n+14,a10=-6;
(3)已知等差数列a1=1,a6=-2,则d=$-\frac{3}{5}$,S6=-3;
(4)已知等差数列a2=15,a6=27,则d=3,S6=117;
(5)$\sqrt{2}$+2与$\sqrt{2}$-2的等差中项是$\sqrt{2}$;
(6)6与10的等差中项是8.
分析 (1)(2)由给出的等差数列的前几求得公差,代入通项公式求得通项并求得a10;
(3)(4)由给出的两项求出公差,代入前n项和公式得答案;
(5)(6)直接由等差中项的概念求解.
解答 解:(1)等差数列2,6,10,14,…的公差d=4,an=2+4(n-1)=4n-2,a10=40-2=38;
(2)等差数列12,10,8,…的公差d=-2,an=12-2(n-1)=-2n+14,a10=-20+14=-6;
(3)由a1=1,a6=-2,得$d=\frac{{a}_{6}-{a}_{1}}{6-1}=\frac{-2-1}{5}=-\frac{3}{5}$,${S}_{6}=6×1+\frac{6×5×(-\frac{3}{5})}{2}=-3$;
(4)由a2=15,a6=27,得$d=\frac{{a}_{6}-{a}_{2}}{6-2}=\frac{27-15}{4}=3$,∴a1=12,则${S}_{6}=6×12+\frac{6×5×3}{2}=117$;
(5)设$\sqrt{2}$+2与$\sqrt{2}$-2的等差中项为A,则A=$\frac{\sqrt{2}+2+\sqrt{2}-2}{2}=\sqrt{2}$;
(6)设6与10的等差中项是B,则B=$\frac{6+10}{2}=8$.
故答案为:(1)4,4n-2,38;(2)-2,-2n+14,-6;(3)$-\frac{3}{5}$,-3;(4)3,117;(5)$\sqrt{2}$;(6)8.
点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,考查等差中项的概念,是基础题.
练习册系列答案
相关题目
3.设集合A={a,b,c},B={b,c,d},M?A,且M?B,则满足上述条件的集合M的个数为( )
A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
8.若集合A={x∈Z|$\frac{x+3}{x-2}$≤0},B={x∈R|x2≥-2x},则A∩B=( )
A. | {-3,-2,0,1} | B. | {-3,-2,0,1,2} | C. | [-3,-2]∪[0,2) | D. | [-3,-2]∪[0,2] |