题目内容

【题目】已知函数f(x)的导函数f'(x)满足2f(x)+xf′(x)>x2(x∈R),则对x∈R都有(
A.x2f(x)≥0
B.x2f(x)≤0
C.x2[f(x)﹣1]≥0
D.x2[f(x)﹣1]≤0

【答案】A
【解析】解:构造函数F(x)=x2f(x),
则F'(x)=2xf(x)+x2f'(x)=x(2f(x)+xf'(x)),
当x>0时,F'(x)>x3>0,F(x)递增;
当x<0时,F'(x)<x3<0,F(x)递减,
所以F(x)=x2f(x)在x=0时取最小值,
从而F(x)=x2f(x)≥F(0)=0,
故选A.
【考点精析】掌握利用导数研究函数的单调性是解答本题的根本,需要知道一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网