题目内容
计算下列各式的值:
(1)lg14-2lg
+lg7-lg18;
(2)
;
(3)(lg5)2+lg2•lg50.
(1)lg14-2lg
7 |
3 |
(2)
lg
| ||||
lg1.2 |
(3)(lg5)2+lg2•lg50.
解 (1)法一 lg14-2lg
+lg7-lg18
=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)
=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.
法二 lg14-2lg
+lg 7-lg18
=lg14-lg(
)2+lg7-lg18=lg
=lg1=0.
(2)
=
=
=
=
.
(3)原式=(lg5)2+lg2•(lg2+2lg5)
=(lg5)2+2lg5•lg2+(lg2)2
=(lg5+lg2)2=1.
7 |
3 |
=lg(2×7)-2(lg7-lg3)+lg7-lg(32×2)
=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0.
法二 lg14-2lg
7 |
3 |
=lg14-lg(
7 |
3 |
14×7 | ||
(
|
(2)
lg
| ||||
lg1.2 |
lg(33)
| ||||
lg
|
=
| ||||
lg3+2lg2-1 |
| ||
lg3+2lg2-1 |
3 |
2 |
(3)原式=(lg5)2+lg2•(lg2+2lg5)
=(lg5)2+2lg5•lg2+(lg2)2
=(lg5+lg2)2=1.
练习册系列答案
相关题目