题目内容

1.已知数列{an}的前n项和为Sn,满足Sn=2(an-n),n∈N+*
(1)证明:{an+2}是等比数列,并求{an}的通项公式;
(2)若数列{bn}满足bn=log2(an+2),Tn为数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和,求Tn

分析 (1)由Sn=2(an-n)=2an-2n,n∈N+*,得Sn-1=2an-1-2(n-1),n≥2,从而an+2=2(an-1+2),n≥2,由此能证明{an+2}是首项为4,公比为2的等比数列,并能求出{an}的通项公式.
(2)由bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,得$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,由此利用裂项求和法能求出数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和.

解答 证明:(1)∵数列{an}的前n项和为Sn,满足Sn=2(an-n)=2an-2n,n∈N+*
∴Sn-1=2an-1-2(n-1),n≥2,
∴Sn-Sn-1=an=2an-2an-1-2,n≥2,
∴an+2=2(an-1+2),n≥2,
当n=1时,S1=2a1-2=a1,解得a1=2,a1+2=4,
∴{an+2}是首项为4,公比为2的等比数列.
∴${a}_{n}+2=4×{2}^{n-1}={2}^{n+1}$,
∴${a}_{n}={2}^{n+1}-2$.
(2)∵bn=$lo{g}_{2}({a}_{n}+2)=lo{g}_{2}{2}^{n+1}$=n+1,
∴$\frac{1}{{b}_{n}{b}_{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}-\frac{1}{n+2}$,
∴数列{$\frac{1}{{b}_{n}{b}_{n+1}}$}的前n项和:
Tn=$\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{n+1}-\frac{1}{n+2}$
=$\frac{1}{2}-\frac{1}{n+2}$.

点评 本题考查等比数列的证明和数列的通项公式及前n项和的求法,是中档题,解题时要认真审题,注意构造法和裂项求和法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网