题目内容

6.在△ABC中,a=4,b=5,c=6,则$\frac{sin2A}{sinC}$=1.

分析 利用余弦定理求出cosC,cosA,即可得出结论.

解答 解:∵△ABC中,a=4,b=5,c=6,
∴cosC=$\frac{16+25-36}{2×4×5}$=$\frac{1}{8}$,cosA=$\frac{25+36-16}{2×5×6}$=$\frac{3}{4}$
∴sinC=$\frac{3\sqrt{7}}{8}$,sinA=$\frac{\sqrt{7}}{4}$,
∴$\frac{sin2A}{sinC}$=$\frac{2×\frac{\sqrt{7}}{4}×\frac{3}{4}}{\frac{3\sqrt{7}}{8}}$=1.
故答案为:1.

点评 本题考查余弦定理,考查学生的计算能力,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网