题目内容

13.已知A(-2,-2),B(-2,6),C(4,-2),点P在圆x2+y2=4上运动,求|PA|2+|PB|2+|PC|2的最值.

分析 设P(a,b),则|PA|2+|PB|2+|PC|2=3a2+3b2-4b+68,利用消元法结合不等式的性质即可求出|PA|2+|PB|2+|PC|2的最大值和最小值.

解答 解:∵点P在圆x2+y2=4上运动,
∴设P(a,b),
则a2+b2=4,
a2=4-b2≥0,
∴b2≤4,
∴-2≤b≤2.
则|PA|2+|PB|2+|PC|2=(a+2)2+(b+2)2+(a+2)2+(b-6)2+(a-4)2+(b+2)2=3a2+3b2-4b+68,
∴把a2=4-b2代入3a2+3b2-4b+68=12-3b2+3b2-4b+68=-4b+80,
∵-2≤b≤2,
∴-8≤-4b≤8
80-8≤80-4b≤80+8,
72≤-4b+80≤88
∴最大值是88,最小值是72,
∴|PA|2+|PB|2+|PC|2的最大值为88,最小值为72.

点评 本题主要考查两点间距离公式的应用,结合不等式的性质是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网