题目内容

如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ) 证明:PA⊥BD;
(Ⅱ) 若PD=AD,求二面角A-PB-C的余弦值。

(Ⅰ)由余弦定理得 ,证得BD2+AD2= AB2,故BDAD;可得 BD PD
所以BD 平面PAD. 故 PABD
(Ⅱ)

解析试题分析:(Ⅰ)因为, 由余弦定理得 
从而BD2+AD2= AB2,故BDAD;又PD 底面ABCD,可得BD PD
所以BD 平面PAD. 故 PABD
(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-,则

,,,

设平面PAB的法向量为n=(x,y,z),则,
 即
因此可取n=
设平面PBC的法向量为m,则
可取m=(0,-1,)        
故二面角A-PB-C的余弦值为 
考点:本题主要考查立体几何中的垂直关系、角的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。注意运用转化与化归思想,将空间问题转化成平面问题。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网