题目内容

如图,在直三棱柱(侧棱垂直底面)中,M、N分别是BC、AC1中点,AA1=2,AB=,AC=AM=1.

(1)证明:MN∥平面A1ABB1
(2)求几何体C—MNA的体积.

(1)证MN∥A1B ;(2).

解析试题分析:(1)因为,M、N分别是BC、AC1中点,连A1B, A1C,则咋三角形A1BC中,由三角形中位线定理知,MN∥A1B ,又平面A1ABB1,所以,MN∥平面A1ABB1;   6分
(2)因为,侧棱垂直底面,所以侧面垂直于底面。由N是AC1中点,取AC的中点G,则NG垂直于底面,即为三棱锥C—MNA,亦即三棱锥N—AMC的高=AA1,而AA1=2,AB=
AC=AM=1,由三角形中线定理
所以,CM=BM=,.               12分
考点:本题主要考查立体几何中的平行关系、体积的计算。
点评:典型题,立体几何题,是高考必考内容,往往涉及垂直关系、平行关系、角、距离、体积的计算。在计算问题中,有“几何法”和“向量法”。利用几何法,要遵循“一作、二证、三计算”的步骤,利用空间向量,省去繁琐的证明,也是解决立体几何问题的一个基本思路。注意运用转化与化归思想,将空间问题转化成平面问题。本题体积计算应用了“等积法”。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网