题目内容
【题目】如图,四边形ABCD是直角梯形,AB=2CD=2PD=2,PC,且有PD⊥AD,AD⊥CD,AB∥CD.
(1)证明:PD⊥平面ABCD;
(2)若四棱锥P﹣ABCD的体积为,求四棱锥P﹣ABCD的表面积.
【答案】(1)证明见解析;(2)
【解析】
(1)推导出PD⊥CD,PD⊥AD,由此能证明PD⊥平面ABCD.
(2)由PD⊥面ABCD,四棱锥P﹣ABCD的体积为,求出AD=1,由PD⊥AB,AB⊥AD,得AB⊥平面PAD,AB⊥PA,PA,由此能求出四棱锥P﹣ABCD的表面积.
解:(1)证明:在△PCD中,PD=1,CD=1,PC,
∵12+12,
∴∠PDC=90°,即PD⊥CD,
又PD⊥AD,AD∩CD=D,∴PD⊥平面ABCD.
(2)由(1)得PD⊥面ABCD,
VP﹣ABCD,
∴AD=1,
∵PD⊥AB,AB⊥AD,PD∩AD=D,
∴AB⊥平面PAD,∴AB⊥PA,∴PA,
由题意得BC=PC,PB,
△PBC中,由余弦定理得cos∠PCB.
∴∠PCB=120°,
∴S△PCB,
,
S△PAD=S△PCD,
,
∴四棱锥P﹣ABCD的表面积S.
【题目】2019年春节前后,中国爆发新型冠状病毒(SARS-Cov-2)如图所示为1月24日至2月16日中国内地(除湖北以外的)感染新型冠状病毒新增人数的折线图,为了预测分析数据的变化规律,建立了与时间变量的不同时间段的两个线性回归模型.根据1月24日至2月3日的数据(时间变量的值依次为1,2,3,4,5,6,7,8,9,10,11)建立模型①:;根据2月4日至2月16日的数据(时间变量的值依次为12,13,14,15,16,17,18,19,20,21,22,23,24)建立模型②:.
1月 24日 | 1月 25日 | 1月 26日 | 1月 27日 | 1月 28日 | 1月 29日 | 1月 30日 | 1月 31日 | 2月 1日 | 2月 2日 | 2月 3日 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
332 | 174 | 298 | 337 | 448 | 593 | 690 | 737 | 720 | 648 | 926 |
2月 4日 | 2月 5日 | 2月 6日 | 2月 7日 | 2月 8日 | 2月 9日 | 2月 10日 | 2月 11日 | 2月 12日 | 2月 13日 | 2月 14日 | 2月 15日 | 2月 16日 |
12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
830 | 741 | 693 | 683 | 559 | 464 | 431 | 377 | 377 | 299 | 259 | 211 | 160 |
(1)求出两个回归直线方程;(计算结果取整数)
(2)中国政府为了人民的生命安全,听取专家意见,了解了病毒信息,并迅速做出一系列的隔离防护措施,但新冠状病毒在世界范围内爆发时,某些欧美国家采取放任的态度,不治疗、不隔离、不检测,甚至不公布,请你用以上数据说明采取一系列措施的必要性,不采取措施的后果.
参考数据:,,,
参考公式:.