题目内容

已知空间四边形OABC,其对角线OB、AC,M、N分别是边OA、CB的中点,点G在线段MN上,且使MG=2GN,用向量
OA
OB
OC

表示向量
OG
是(  )
A.
OG
=
OA
+
2
3
OB
+
2
3
OC
B.
OG
=
1
2
OA
+
2
3
OB
+
2
3
OC
C.
OG
=
1
6
OA
+
1
3
OB
+
1
3
OC
D.
OG
=
1
6
OA
+
1
3
OB
+
2
3
OC
OG
=
OM
+
MG
=
OM
+
2
3
MN

=
OM
+
2
3
(
MO
+
OC
+
CN
)

=
1
3
OM
+
2
3
OC
+
1
3
(
OB
-
OC
)

=
1
6
OA
+
1
3
OB
+
1
3
OC

OG
=
1
6
OA
+
1
3
OB
+
1
3
OC

故选C.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网