题目内容
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_ST/images0.png)
(1)直线PQ是否能通过下面的点M(6,1),点N(4,5);
(2)在△OPQ内作内接正方形ABCD,顶点A、B在边OQ上,顶点C在边PQ上,顶点D在边OP上.
①求证:顶点C一定在直线y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_ST/0.png)
②求下图中阴影部分面积的最大值,并求这时顶点A、B、C、D的坐标.
【答案】分析:对于(1)可先求直线PQ的方程再把点M,点N的坐标代入检验即可得到结论.
对于(2)的①找出点C的坐标看是否适合直线y=
x.对于(2)的②阴影部分的面积即为三角形的面积减去正方形的面积,作差求最值即可.
解答:解:(1)令过P、Q方程![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/1.png)
tx-2(t-5)y+t2-10t=0,
假设M过PQ,
则t2-6t+10=0,△=36-40<0,无实根,故M不过直线PQ.
若假设N过直线PQ,
同理得:t2-16t+50=0,t1=8-
,t2=8+
(舍去)
∵t∈(0,10),当t=8-
时,直线PQ过点N(4,5)
(2)由已知条件可设A(a,0),B(2a,0),C(2a,a),D(a,a).
①点C(2a,a),即
,
消去a得y=
x,
故顶点C在直线y=
x上.
②令阴影面积为S,则s=
|10-t|-|t|-a2
∵t>0,10-t>0,S=
(-t2+10t)-a2
∵点C(2a,a)在直线PQ上,
∴2at-2(t-5)a=-t2+10t
∴a=
(10t-t2),
S=
×10a-a2=-
+![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/13.png)
∴当a=
时,Smax=
,
此时顶点A、B、C、D的坐标为A(
,0)
,B(5,0),C(5,
),D(
,
)
点评:转化思想是我们高中常考的一种解题思想,常用于正面不好求,但转化后好求的题中.
对于(2)的①找出点C的坐标看是否适合直线y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/0.png)
解答:解:(1)令过P、Q方程
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/1.png)
tx-2(t-5)y+t2-10t=0,
假设M过PQ,
则t2-6t+10=0,△=36-40<0,无实根,故M不过直线PQ.
若假设N过直线PQ,
同理得:t2-16t+50=0,t1=8-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/2.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/3.png)
∵t∈(0,10),当t=8-
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/4.png)
(2)由已知条件可设A(a,0),B(2a,0),C(2a,a),D(a,a).
①点C(2a,a),即
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/5.png)
消去a得y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/6.png)
故顶点C在直线y=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/7.png)
②令阴影面积为S,则s=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/8.png)
∵t>0,10-t>0,S=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/9.png)
∵点C(2a,a)在直线PQ上,
∴2at-2(t-5)a=-t2+10t
∴a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/10.png)
S=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/11.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/12.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/13.png)
∴当a=
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/14.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/15.png)
此时顶点A、B、C、D的坐标为A(
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/16.png)
,B(5,0),C(5,
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/17.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/18.png)
![](http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131103172238168854421/SYS201311031722381688544019_DA/19.png)
点评:转化思想是我们高中常考的一种解题思想,常用于正面不好求,但转化后好求的题中.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目