题目内容
如图,已知三棱柱ABC-A1B1C1的侧棱与底面所成的角为60°,AB=BC,A1A=A1C=2,AB⊥BC,侧面AA1C1C⊥底面ABC.
(1)证明:A1B⊥A1C1;
(2)求二面角A-CC1-B的大小;
(3)求经过A1、A、B、C四点的球的表面积.
(1)证明:A1B⊥A1C1;
(2)求二面角A-CC1-B的大小;
(3)求经过A1、A、B、C四点的球的表面积.
分析:此题可利用空间向量做:由于A1O⊥AC,BO⊥AC,A1A=A1C=2故取AC中点为O则A1O⊥AC,BO⊥AC而侧面AA1C1C⊥底面ABC且故可利用面面垂直的性质定理可得A1O⊥OB所以可以OB,OC,OA1所在的直线为x,y,z轴建立空间直角坐标系.
(1)要证明A1B⊥A1C1即证明
⊥
即说明
•
=0即可故需求出
,
的坐标然后利用平面向量数量积的坐标计算求出
•
即可.
(2)分别求出面BCC1,面ACC1的法向量m,n然后利用向量的夹角公式cos<
,
>=
求出<
,
>而点B在平面ACC1内的射影O在二面角的面ACC1内故二面角A-CC1-B为锐角所以二面角A-CC1-B的大小为<
,
>(cos<
,
>>0)或π-<
,
>(cos<
,
><0).
(3)由于A1A=A1C,AB⊥BC,O为AC的中点故A,B,C三点所在的平面截经过A1、A、B、C四点的球所得的截面为球的小圆而A1O⊥平面ABC故经过A1、A、B、C四点的球的球心在A1O上而三角形A1AC为正三角形故根据对称性可知球心在正三角形A1AC的中心然后利用正三角形的性质求出球的半径再结合球的表面经公式即可得解.
(1)要证明A1B⊥A1C1即证明
A1B |
A1C1 |
A1B |
A1C1 |
A1B |
A1C1 |
A1B |
A1C1 |
(2)分别求出面BCC1,面ACC1的法向量m,n然后利用向量的夹角公式cos<
m |
n |
| ||||
|
|
m |
n |
m |
n |
m |
n |
m |
n |
m |
n |
(3)由于A1A=A1C,AB⊥BC,O为AC的中点故A,B,C三点所在的平面截经过A1、A、B、C四点的球所得的截面为球的小圆而A1O⊥平面ABC故经过A1、A、B、C四点的球的球心在A1O上而三角形A1AC为正三角形故根据对称性可知球心在正三角形A1AC的中心然后利用正三角形的性质求出球的半径再结合球的表面经公式即可得解.
解答:解:取AC中点为O,由A1A=A1C,AB=BC,知A1O⊥AC,BO⊥AC,
又平面AA1C1C⊥平面ABC,所以A1O⊥OB.
建立如图所示的坐标系O-xyz,则A(0,-1,0),B(1,0,0),
A1(0,0,
),C(0,1,0).
(1)∵
=(1,0,-
),
=
=(0,2,0)
∴
•
=0
∴A1B⊥A1C1.
(2)设
=(x,y,z)为面BCC1的一个法向量.
∵
=(-1,1,0),
=
=(0,1,
)
又
•
=
•
=0,
∴
取n=(
,
,-1).
又
=(1,0,0)是面ACC1的法向量,
∴cos<
,
>=
=
=
.
由点B在平面ACC1内的射影O在二面角的面ACC1内,知二面角A-CC1-B为锐角,
∴二面角A-CC1-B的大小为arccos
.
(3)设球心为O1,因为O是△ABC的外心,A1O⊥平面ABC,
所以点O1在A1O上,则O1是正三角形A1AC的中心.
则球半径R=
A1A=
,球表面积S=4πR2=
π.
又平面AA1C1C⊥平面ABC,所以A1O⊥OB.
建立如图所示的坐标系O-xyz,则A(0,-1,0),B(1,0,0),
A1(0,0,
3 |
(1)∵
A1B |
3 |
A1C1 |
AC |
∴
A1B |
A1C1 |
∴A1B⊥A1C1.
(2)设
m |
∵
BC |
CC1 |
AA1 |
3 |
又
m |
BC |
m |
CC1 |
∴
|
3 |
3 |
又
n |
∴cos<
m |
n |
| ||||
|
|
| ||
|
| ||
7 |
由点B在平面ACC1内的射影O在二面角的面ACC1内,知二面角A-CC1-B为锐角,
∴二面角A-CC1-B的大小为arccos
| ||
7 |
(3)设球心为O1,因为O是△ABC的外心,A1O⊥平面ABC,
所以点O1在A1O上,则O1是正三角形A1AC的中心.
则球半径R=
| ||
3 |
2
| ||
3 |
16 |
3 |
点评:本题主要考察了利用空间向量证明线线垂直、求二面角以及求球的表面积,属常考题,较难.解题的关键是正确建立空间直角坐标系然后将线线垂直、二面角问题转化为证明向量垂直,法向量的夹角问题,同时还要求计算一定要准确!
练习册系列答案
相关题目