题目内容

【题目】已知函数f(x)=|x+a|+|x+ |(a>0)
(1)当a=2时,求不等式f(x)>3的解集;
(2)证明:f(m)+f(﹣ )≥4.

【答案】
(1)解:当a=2时,求不等式f(x)>3,即|x+2|+|x+ |>3.

而|x+2|+|x+ |表示数轴上的x对应点到﹣2、﹣ 对应点的距离之和,

而0和﹣3对应点到﹣ 对应点的距离之和正好等于3,

故不等式f(x)>3的解集为{x|x<﹣ ,或 x> }.


(2)证明:∵f(m)+f(﹣ )=|m+a|+|m+ |+|﹣ +a||﹣ + |

=(|m+a|+|﹣ +a|)+(|m+ |+|﹣ + |)≥2(|m+ |)=2(|m|+| |)≥4,

∴原结论成立.


【解析】(1)当a=2时,求不等式即|x+2|+|x+ |>3,再利用对值的意义求得它的解集.(2)由条件利用绝对值三角不等式、基本不等式,证得要证的结论.
【考点精析】通过灵活运用绝对值不等式的解法,掌握含绝对值不等式的解法:定义法、平方法、同解变形法,其同解定理有;规律:关键是去掉绝对值的符号即可以解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网